S1. The Carbocation Library
Our carbocation numbering system uses a four-tier
hierarchical classification, SiteType ID + CarbonNumber + ReactionChannel ID +
Intermediate ID: 1) the active site type, i.e. Site-I dephosphorylation or Site-II
protonation; 2) number of carbon atoms; 3) reaction channels; 4) the carbocation
intermediates. For example, R01.010.A01.01 means Site-I type reaction (dephosphorylation),
C10 substrate and product (Figure S1-1), reaction channel A01 (in reaction
channel ID A01, ‘A’ is the first classification of the reaction channel, e.g.
1,6 cyclization, ‘01’ is the second classification of the reaction channel). Descriptions
of the current reaction channels are listed in Table S1-1. 2D formulas of the reaction
channels and carbocation structures and the EC numbers covered by each
intermediate are shown in Table S1-2 (Site-I channels) and Table S1-3 (Site-II
channels).
The attribute ‘representative intermediate’ describes if an
intermediate is a representative intermediate for reaction channel prediction.
We normally select two representative intermediates for one reaction channel,
which are used to describe the first major transition state leading to product
diversity. In the Site-I type reactions, the first representative intermediate
is the dephosphorylated carbocation that is about to be cyclized, for example,
in reaction channel R01.010.A01 (Table S1-2-1), the first representative
intermediate is R01.010.A01.02, rather than R01.010.A01.01, because 1,6
cyclization requires the rotation of the C2-C3 double bond; the second representative
intermediate is the first cyclized carbocation intermediate, e.g. R01.010.A01.03.
In the Site-II type reactions, the first and the second representative
intermediates are the (6,6) and (6,6,6,5) species. The representative
intermediates are highlighted with red color in the reaction schemes. Most of
the reaction channels were summarized in a recent review by Tantillo, D. J. 1 and the Nomenclature
Committee of the International Union of Biochemistry and Molecular Biology (IUBMB, http://www.chem.qmul.ac.uk/iubmb/).
Figure S1-1. Illustration of the carbocation library
numbering system

Table S1-1a. Description of different reaction
channels
Reaction
Channel ID |
Substrate |
Mechanism
Description |
EC numbers
covered by the channel |
References |
R01.010.A01 |
GPP |
GPP 1,6
cyclization |
4.2.3.20; 4.2.3.108; 4.2.3.112; 4.2.3.113; 4.2.3.121; 4.2.3.122; 5.5.1.8; 4.2.3.116; 4.2.3.114; 4.2.3.115; 4.2.3.11; 4.2.3.109; 4.2.3.110; 4.2.3.10 |
2-6 |
R01.010.A02 |
GPP |
GPP 1,6
cyclization |
4.2.3.16; 4.2.3.107; 4.2.3.111; 4.2.3.113; 4.2.3.119; 4.2.3.120; 5.5.1.22; 4.2.3.117; 4.2.3.105; 4.2.3.52; 4.2.3.114; 4.2.3.115; 4.2.3.109; 4.2.3.110 |
2-6 |
R01.011.A01 |
C11GPP |
GPP 1,6
cyclization |
4.2.3.118 |
7, 8 |
R01.011.A02 |
C11GPP |
GPP 1,6
cyclization |
|
7, 8 |
R01.015.A01 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.59; 4.2.3.95; 4.2.3.6 |
9, 10 |
R01.015.A02 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.55;4.2.3.59;4.2.3.138; 4.2.3.82; 4.2.3.81; 4.2.3.83; 4.2.3.69; 4.2.3.78; 4.2.3.79 |
9, 10 |
R01.015.A03 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.59; 4.2.3.94; 4.2.3.37; 4.2.3.50; 4.2.3.102 |
11 |
R01.015.A04 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.55;4.2.3.59;4.2.3.138; 4.2.3.53; 4.2.3.54; 4.2.3.101 |
11 |
R01.015.A05 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.59; 4.2.3.94; 4.2.3.24 |
12, 13 |
R01.015.A06 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.55;4.2.3.59;4.2.3.138; 4.2.3.65; 4.2.3.123; 4.2.3.142 |
12, 13 |
R01.015.A07 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.59 |
14 |
R01.015.A08 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.55;4.2.3.59;4.2.3.138; 5.5.1.17 |
14 |
R01.015.A09 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.59 |
11 |
R01.015.A10 |
FPP |
FPP 1,6
cyclization |
4.2.3.38;4.2.3.40;4.2.3.55;4.2.3.59;4.2.3.138; 4.2.3.39 |
11 |
R01.015.B01 |
FPP |
FPP
1,10-trans cyclization |
4.2.3.22;4.2.3.23;4.2.3.60;4.2.3.71; 4.2.3.90; 4.2.3.61; 4.2.3.21; 4.2.3.93; 4.2.3.87 |
15, 16 |
R01.015.B02 |
FPP |
FPP
1,10-trans cyclization |
4.2.3.60;4.2.3.71 |
15, 16 |
R01.015.B03 |
FPP |
FPP
1,10-trans cyclization |
4.2.3.22;4.2.3.23;4.2.3.60;4.2.3.71; 4.2.3.66; 4.2.3.76; 4.2.3.70 |
17-20 |
R01.015.B04 |
FPP |
FPP
1,10-trans cyclization |
4.2.3.60;4.2.3.71; 4.2.3.9; 4.2.3.86; 4.2.3.76 |
18-20 |
R01.015.B05 |
FPP |
FPP
1,10-trans cyclization |
4.2.3.22;4.2.3.23;4.2.3.60;4.2.3.71; 4.2.3.73; 4.2.3.72; 4.2.3.88; 4.2.3.100; 4.2.3.96; 4.2.3.75; 4.2.3.139 |
18-20 |
R01.015.B06 |
FPP |
FPP
1,10-trans cyclization |
4.2.3.60;4.2.3.71; 4.2.3.77;4.2.3.143 |
18-20 |
R01.015.C01 |
FPP |
FPP
1,10-cis cyclization |
4.2.3.13; 4.2.3.92; 4.2.3.129 |
21-24 |
R01.015.C02 |
FPP |
FPP
1,10-cis cyclization |
|
21-24 |
R01.015.C03 |
FPP |
FPP
1,10-cis cyclization |
4.2.3.125; 4.2.3.126; 4.2.3.91; 4.2.3.128; 4.2.3.127; 4.2.3.133 |
22, 23 |
R01.015.C04 |
FPP |
FPP
1,10-cis cyclization |
|
22, 23 |
R01.015.C05 |
FPP |
FPP
1,10-cis cyclization |
4.2.3.129 |
21-24 |
R01.015.C06 |
FPP |
FPP
1,10-cis cyclization |
4.2.3.98; 4.2.3.97; 4.2.3.63; 4.2.3.64 |
21-24 |
R01.015.C07 |
FPP |
FPP
1,10-cis cyclization |
4.2.3.67 |
21-24 |
R01.015.C08 |
FPP |
FPP
1,10-cis cyclization |
4.2.3.62; 4.2.3.97 |
21-24 |
R01.015.D01 |
FPP |
FPP
1,11-cis cyclization |
4.2.3.80; 4.2.3.58 |
25 |
R01.015.D02 |
FPP |
FPP
1,11-cis cyclization |
4.2.3.57; 4.2.3.74; 4.2.3.136 |
26, 27 |
R01.015.E01 |
FPP |
FPP
1,11-trans cyclization |
4.2.3.104; 4.2.3.135; 4.2.3.7; 4.2.3.56 |
28-30 |
R01.015.E02 |
FPP |
FPP
1,11-trans cyclization |
4.2.3.104; 4.2.3.89 |
28-30 |
R01.015.E03 |
FPP |
FPP
1,11-trans cyclization |
4.2.3.104; 4.2.3.137 |
28-30 |
R01.020.F01 |
GGPP |
GGPP 1,14
cyclization |
4.2.3.8; 4.2.3.17 |
31, 32 |
R01.020.G01 |
GGPP |
GGPP 1,11
+ 10,14 cyclization |
4.2.3.43 |
33 |
R01.020.H01 |
CPP |
CPP 3,19
cyclization |
4.2.3.44; 4.2.3.18; 4.2.3.32; 4.2.3.45; 4.2.3.131; 4.2.3.132 |
34-37 |
R01.020.H02 |
CPP |
CPP 3,19
cyclization |
4.2.3.18; 4.2.3.32; 4.2.3.131; 4.2.3.132 |
34-37 |
R01.020.H03 |
entCPP |
entCPP
3,19 cyclization |
4.2.3.30; 4.2.3.19; 4.2.3.103; 4.2.3.28; 4.2.3.31 |
34-37 |
R01.020.H04 |
entCPP |
entCPP
3,19 cyclization |
4.2.3.29 |
34-37 |
R01.020.H05 |
9a-CPP |
9a-CPP
3,19 cyclization |
4.2.3.34; 4.2.3.33 |
34-37 |
R01.020.H06 |
9a-CPP |
9a-CPP
3,19 cyclization |
4.2.3.35; 4.2.3.42 |
34-37 |
R01.005.N01 |
DMAPP |
DMAPP
isomerization |
4.2.3.27 |
38 |
R02.030.A01 |
Oxido-squalene |
Hopene
like cyclization |
5.4.99.38; 4.2.1.129;5.4.99.17; 4.2.1.123 |
39-41 |
R02.030.A02 |
Oxido-squalene |
Lupeol,
amyrin like cyclization |
5.4.99.38; 4.2.1.125;5.4.99.37; 4.2.1.128;5.4.99.41; 5.4.99.34; 5.4.99.56; 5.4.99.51; 5.4.99.46;5.4.99.57; 5.4.99.34;5.4.99.55; 5.4.99.39;5.4.99.48;5.4.99.54;5.4.99.55; 5.4.99.35; 5.4.99.36; 5.4.99.49;5.4.99.50; 5.4.99.40;5.4.99.52 |
42, 43 |
R02.030.A03 |
Oxido-squalene |
Lanosterol
like cyclization |
5.4.99.38; 5.4.99.32; 5.4.99.7;5.4.99.8;5.4.99.47; 5.4.99.33; 5.4.99.53 |
44, 45 |
R02.030.A04 |
Oxido-squalene |
Arabidiol
like cyclization |
4.2.1.124; 5.4.99.31 |
46 |
R02.035.B01 |
C35
all-trans terpene |
Sporulenol
like cyclization |
4.2.1.137 |
47, 48 |
R02.020.C01 |
GGPP |
CPP |
5.5.1.12; 5.5.1.16 |
36, 49, 50 |
R02.020.C02 |
GGPP |
ent-CPP |
5.5.1.13 |
36, 49, 50 |
R02.020.C03 |
GGPP |
9a-CPP |
5.5.1.14; 5.5.1.15 |
36, 49, 50 |
Table S1-1b. Mapping of EC to reaction
channels
EC number |
Common
Name |
Reaction
Channel ID |
4.2.3.6 |
trichodiene |
R01.015.A01 |
4.2.3.7 |
pentalenene |
R01.015.E01 |
4.2.3.8 |
casbene |
R01.020.F01 |
4.2.3.9 |
aristolochene |
R01.015.B04 |
4.2.3.10 |
(-)-endo-fenchol |
R01.010.A01 |
4.2.3.11 |
sabinene
hydrate |
R01.010.A01 |
4.2.3.13 |
(+)-delta-cadinene |
R01.015.C01 |
4.2.3.16 |
(S)-limonene |
R01.010.A02 |
4.2.3.17 |
taxa-4,11-diene |
R01.020.F01 |
4.2.3.18 |
abieta-7,13-diene |
R01.020.H02; R01.020.H01 |
4.2.3.19 |
ent-kaurene |
R01.020.H03 |
4.2.3.20 |
(R)-limonene |
R01.010.A01 |
4.2.3.21 |
vetispiradiene |
R01.015.B01 |
4.2.3.22 |
(1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol |
R01.015.B01; R01.015.B03; R01.015.B05 |
4.2.3.23 |
(+)-(R)-gemacrene
A |
R01.015.B01; R01.015.B03; R01.015.B05 |
4.2.3.24 |
amorpha-4,11-diene |
R01.015.A05 |
4.2.3.27 |
isoprene |
R01.005.N01 |
4.2.3.28 |
ent-cassa-12,15-diene |
R01.020.H03 |
4.2.3.29 |
ent-sandaracopimara-8(14),15-diene |
R01.020.H04 |
4.2.3.30 |
ent-pimara-8(14),15-diene |
R01.020.H03 |
4.2.3.31 |
ent-pimara-9(11),15-diene |
R01.020.H03 |
4.2.3.32 |
abieta-8(14),12-diene |
R01.020.H02; R01.020.H01 |
4.2.3.33 |
stemar-13-ene |
R01.020.H05 |
4.2.3.34 |
stemod-13(17)-ene |
R01.020.H05 |
4.2.3.35 |
9beta-pimara-7,15-diene |
R01.020.H06 |
4.2.3.37 |
(+)-epi-isozizaene |
R01.015.A03 |
4.2.3.38 |
(E)-alpha-bisabolene |
R01.015.A03; R01.015.A02; R01.015.A01; R01.015.A07; R01.015.A06; R01.015.A05; R01.015.A04; R01.015.A09; R01.015.A08; R01.015.A10 |
4.2.3.39 |
8-epi-cedrol |
R01.015.A10 |
4.2.3.40 |
(Z)-gamma-bisabolene |
R01.015.A03; R01.015.A02; R01.015.A01; R01.015.A07; R01.015.A06; R01.015.A05; R01.015.A04; R01.015.A09; R01.015.A08; R01.015.A10 |
4.2.3.42 |
aphidicolan-16beta-ol |
R01.020.H06 |
4.2.3.43 |
fusicocca-2,10(14)-diene |
R01.020.G01 |
4.2.3.44 |
isopimara-7,15-diene |
R01.020.H01 |
4.2.3.45 |
phyllocladan-16alpha-ol |
R01.020.H01 |
4.2.3.50 |
(+)-alpha-santalene |
R01.015.A03 |
4.2.3.52 |
(4S)-beta-phellandrene |
R01.010.A02 |
4.2.3.53 |
(+)-endo-beta-bergamotene |
R01.015.A04 |
4.2.3.54 |
(-)-endo-alpha-bergamotene |
R01.015.A04 |
4.2.3.55 |
(S)-beta-bisabolene |
R01.015.A02; R01.015.A06; R01.015.A04; R01.015.A08; R01.015.A10 |
4.2.3.56 |
gamma-humulene |
R01.015.E01 |
4.2.3.57 |
(-)-beta-caryophyllene |
R01.015.D02 |
4.2.3.58 |
longifolene |
R01.015.D01 |
4.2.3.59 |
(E)-gamma-bisabolene |
R01.015.A03; R01.015.A02; R01.015.A01; R01.015.A07; R01.015.A06; R01.015.A05; R01.015.A04; R01.015.A09; R01.015.A08; R01.015.A10 |
4.2.3.60 |
germacrene
C |
R01.015.B01; R01.015.B02; R01.015.B03; R01.015.B04; R01.015.B05; R01.015.B06 |
4.2.3.61 |
(+)-5-epiaristolochene |
R01.015.B01 |
4.2.3.62 |
(-)-gamma-cadinene |
R01.015.C08 |
4.2.3.63 |
(+)-cubenene |
R01.015.C06 |
4.2.3.64 |
(+)-epicubenol |
R01.015.C06 |
4.2.3.65 |
zingiberene |
R01.015.A06 |
4.2.3.66 |
beta-selinene |
R01.015.B03 |
4.2.3.67 |
cis-muurola-3,5-diene |
R01.015.C07 |
4.2.3.69 |
(+)-alpha-barbatene |
R01.015.A02 |
4.2.3.70 |
patchoulol |
R01.015.B03 |
4.2.3.71 |
(E,E)-germacrene
B |
R01.015.B01; R01.015.B02; R01.015.B03; R01.015.B04; R01.015.B05; R01.015.B06 |
4.2.3.72 |
(-)-alpha-gurjunene |
R01.015.B05 |
4.2.3.73 |
(+)-valencene |
R01.015.B05 |
4.2.3.74 |
presilphiperfolan-8beta-ol |
R01.015.D02 |
4.2.3.75 |
(-)-germacrene
D |
R01.015.B05 |
4.2.3.76 |
(+)-delta-selinene |
R01.015.B03; R01.015.B04 |
4.2.3.77 |
(+)-germacrene
D |
R01.015.B06 |
4.2.3.78 |
(+)-beta-chamigrene |
R01.015.A02 |
4.2.3.79 |
(+)-thujopsene |
R01.015.A02 |
4.2.3.80 |
alpha-longipinene |
R01.015.D01 |
4.2.3.81 |
(-)-exo-alpha-bergamotene |
R01.015.A02 |
4.2.3.82 |
(+)-alpha-santalene |
R01.015.A02 |
4.2.3.83 |
(-)-beta-santalene |
R01.015.A02 |
4.2.3.86 |
7-epi-alpha-selinene |
R01.015.B04 |
4.2.3.87 |
alpha-guaiene |
R01.015.B01 |
4.2.3.88 |
viridiflorene |
R01.015.B05 |
4.2.3.89 |
(+)-beta-caryophyllene |
R01.015.E02 |
4.2.3.90 |
5-epi-alpha-selinene |
R01.015.B01 |
4.2.3.91 |
cubebol |
R01.015.C03 |
4.2.3.92 |
(+)-gamma-cadinene |
R01.015.C01 |
4.2.3.93 |
delta-guaiene |
R01.015.B01 |
4.2.3.94 |
gamma-curcumene |
R01.015.A03; R01.015.A05 |
4.2.3.95 |
(-)-alpha-cuprenene |
R01.015.A01 |
4.2.3.96 |
avermitilol |
R01.015.B05 |
4.2.3.97 |
(-)-delta-cadinene |
R01.015.C06; R01.015.C08 |
4.2.3.98 |
(+)-T-muurolol |
R01.015.C06 |
4.2.3.100 |
bicyclogermacrene |
R01.015.B05 |
4.2.3.101 |
7-epi-sesquithujene |
R01.015.A04 |
4.2.3.102 |
sesquithujene |
R01.015.A03 |
4.2.3.103 |
ent-isokaurene |
R01.020.H03 |
4.2.3.104 |
alpha-humulene |
R01.015.E03; R01.015.E02; R01.015.E01 |
4.2.3.105 |
tricyclene |
R01.010.A02 |
4.2.3.107 |
(+)-car-3-ene |
R01.010.A02 |
4.2.3.108 |
1,8-cineole |
R01.010.A01 |
4.2.3.109 |
(-)-sabinene |
R01.010.A02; R01.010.A01 |
4.2.3.110 |
(+)-sabinene |
R01.010.A02; R01.010.A01 |
4.2.3.111 |
(-)-alpha-terpineol |
R01.010.A02 |
4.2.3.112 |
(+)-alpha-terpineol |
R01.010.A01 |
4.2.3.113 |
terpinolene |
R01.010.A02; R01.010.A01 |
4.2.3.114 |
gamma-terpinene |
R01.010.A02; R01.010.A01 |
4.2.3.115 |
alpha-terpinene |
R01.010.A02; R01.010.A01 |
4.2.3.116 |
(+)-camphene |
R01.010.A01 |
4.2.3.117 |
(-)-camphene |
R01.010.A02 |
4.2.3.118 |
2-methylisoborneol |
R01.010.A01 |
4.2.3.119 |
(-)-alpha-pinene |
R01.010.A02 |
4.2.3.120 |
(-)-beta-pinene |
R01.010.A02 |
4.2.3.121 |
(+)-alpha-pinene |
R01.010.A01 |
4.2.3.122 |
(+)-beta-pinene |
R01.010.A01 |
4.2.3.123 |
beta-sesquiphellandrene |
R01.015.A06 |
4.2.3.125 |
alpha-muurolene |
R01.015.C03 |
4.2.3.126 |
gamma-muurolene |
R01.015.C03 |
4.2.3.127 |
beta-copaene |
R01.015.C03 |
4.2.3.128 |
beta-cubebene |
R01.015.C03 |
4.2.3.129 |
(+)-sativene |
R01.015.C05; R01.015.C01 |
4.2.3.131 |
miltiradiene |
R01.020.H02; R01.020.H01 |
4.2.3.132 |
neoabietadiene |
R01.020.H02; R01.020.H01 |
4.2.3.133 |
(-)-alpha-copaene |
R01.015.C03 |
4.2.3.135 |
Delta6-protoilludene |
R01.015.E01 |
4.2.3.136 |
(-)-alpha-isocomene |
R01.015.D02 |
4.2.3.137 |
(E)-2-epi-beta-caryophyllene |
R01.015.E03 |
4.2.3.138 |
(+)-epi-alpha-bisabolol |
R01.015.A02; R01.015.A06; R01.015.A04; R01.015.A08; R01.015.A10 |
4.2.3.139 |
valerena-4,7(11)-diene |
R01.015.B05 |
4.2.3.142 |
7-epizingiberene |
R01.015.A06 |
4.2.3.143 |
kunzeaol |
R01.015.B06 |
5.5.1.17 |
(S)-beta-macrocarpene |
R01.015.A08 |
5.5.1.22 |
(–)-bornyl
diphosphate |
R01.010.A02 |
5.5.1.8 |
(+)-bornyl
diphosphate |
R01.010.A01 |
4.2.1.123 |
tetrahymanol |
R02.030.A01 |
4.2.1.124 |
arabidiol |
R02.030.A04 |
4.2.1.125 |
dammarenediol
II |
R02.030.A02 |
4.2.1.128 |
lupan-3beta,20-diol |
R02.030.A02 |
4.2.1.129 |
hopanol |
R02.030.A01 |
4.2.1.137 |
tetraprenyl-beta-curcumene |
R02.035.B01 |
5.4.99.17 |
hop-22(29)-ene |
R02.030.A01 |
5.4.99.31 |
thalianol |
R02.030.A04 |
5.4.99.32 |
(17Z)-protosta-17(20),24-dien-3beta-ol |
R02.030.A03 |
5.4.99.33 |
cucurbitadienol |
R02.030.A03 |
5.4.99.34 |
germanicol |
R02.030.A02 |
5.4.99.35 |
taraxerol |
R02.030.A02 |
5.4.99.36 |
isomultiflorenol |
R02.030.A02 |
5.4.99.37 |
dammara-20,24-diene |
R02.030.A02 |
5.4.99.38 |
camelliol
C |
R02.030.A03; R02.030.A02; R02.030.A01 |
5.4.99.39 |
beta-amyrin |
R02.030.A02 |
5.4.99.40 |
alpha-amyrin |
R02.030.A02 |
5.4.99.41 |
lupeol |
R02.030.A02 |
5.4.99.46 |
shionone |
R02.030.A02 |
5.4.99.47 |
parkeol |
R02.030.A03 |
5.4.99.48 |
achilleol
B |
R02.030.A02 |
5.4.99.49 |
glutinol |
R02.030.A02 |
5.4.99.50 |
friedelin |
R02.030.A02 |
5.4.99.51 |
baccharis
oxide |
R02.030.A02 |
5.4.99.52 |
alpha-seco-amyrin |
R02.030.A02 |
5.4.99.53 |
marneral |
R02.030.A03 |
5.4.99.54 |
beta-seco-amyrin |
R02.030.A02 |
5.4.99.55 |
delta-amyrin |
R02.030.A02 |
5.4.99.56 |
tirucalla-7,24-dien-3beta-ol |
R02.030.A02 |
5.4.99.57 |
baruol |
R02.030.A02 |
5.4.99.7 |
lanosterol |
R02.030.A03 |
5.4.99.8 |
cycloartenol |
R02.030.A03 |
5.5.1.12 |
(+)-copalyl
diphosphate |
R02.020.C01 |
5.5.1.13 |
ent-copalyl
diphosphate |
R02.020.C02 |
5.5.1.14 |
9alpha-copalyl
diphosphate |
R02.020.C03 |
5.5.1.15 |
terpentedienyl
diphosphate |
R02.020.C03 |
5.5.1.16 |
tuberculosinyl
diphosphate |
R02.020.C01 |
Reaction Channel Schemes:
Site-I reaction channels
R01.005.N01 (back to Channel List // back to EC
List)

R01.010.A01 (back to Channel List // back to EC
List)

R01.010.A02 (back to Channel List // back to EC
List)

R01.011.A01 (back to Channel List // back to EC
List)

R01.011.A02 (back to Channel List // back to EC
List)

R01.015.A01 (back to Channel List // back to EC
List)

R01.015.A02 (back to Channel List // back to EC
List)

R01.015.A03 (back to Channel List // back to EC
List)

R01.015.A04 (back to Channel List // back to EC
List)

R01.015.A05 (back to Channel List // back to EC
List)

R01.015.A06 (back to Channel List // back to EC
List)

R01.015.A07 (back to Channel List // back to EC
List)

R01.015.A08 (back to Channel List // back to EC
List)

R01.015.A09 (back to Channel List // back to EC
List)

R01.015.A10 (back to Channel List // back to EC
List)

R01.015.B01 (back to Channel List // back to EC
List)

R01.015.B02 (back to Channel List // back to EC
List)

R01.015.B03 (back to Channel List // back to EC
List)

R01.015.B04 (back to Channel List // back to EC
List)

R01.015.B05 (back to Channel List // back to EC
List)

R01.015.B06 (back to Channel List // back to EC
List)

R01.015.C01 (back to Channel List // back to EC
List)

R01.015.C02 (back to Channel List // back to EC
List)

R01.015.C03 (back to Channel List // back to EC
List)

R01.015.C04 (back to Channel List // back to EC
List)

R01.015.C05 (back to Channel List // back to EC
List)

R01.015.C06 (back to Channel List // back to EC
List)

R01.015.C07 (back to Channel List // back to EC
List)

R01.015.C08 (back to Channel List // back to EC
List)

R01.015.D01 (back to Channel List // back to EC
List)

R01.015.D02 (back to Channel List // back to EC
List)

R01.015.E01 (back to Channel List // back to EC
List)

R01.015.E02 (back to Channel List // back to EC
List)

R01.015.E03 (back to Channel List // back to EC
List)

R01.020.F01 (back to Channel List // back to EC
List)

R01.020.G01 (back to Channel List // back to EC
List)

R01.020.H01 (back to Channel List // back to EC
List)

R01.020.H02 (back to Channel List // back to EC
List)

R01.020.H03 (back to Channel List // back to EC
List)

R01.020.H04 (back to Channel List // back to EC
List)

R01.020.H05 (back to Channel List // back to EC
List)

R01.020.H06 (back to Channel List // back to EC
List)

Site-II reaction
channels
R02.030.A01 (back to Channel List // back to EC
List)

R02.030.A02 (back to Channel List // back to EC
List)

R02.030.A03 (back to Channel List // back to EC
List)

R02.030.A04 (back to Channel List // back to EC
List)

R02.035.B01 (back to Channel List // back to EC
List)

R02.020.C01 (back to Channel List // back to EC
List)

R02.020.C02 (back to Channel List // back to EC
List)

R02.020.C03 (back to Channel List // back to EC
List)

References
1. Tantillo, D. J. (2011) Biosynthesis via
carbocations: Theoretical studies on terpene formation, Nat Prod Rep 28,
1035-1053.
2. Croteau, R. B.,
Wheeler, C. J., Cane, D. E., Ebert, R., and Ha, H. J. (1987) Isotopically
sensitive branching in the formation of cyclic monoterpenes: proof that
(-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene
cyclase via deprotonation of a common intermediate, Biochemistry 26,
5383-5389.
3. Hong, Y. J.,
and Tantillo, D. J. (2010) Quantum chemical dissection of the classic
terpinyl/pinyl/bornyl/camphyl cation conundrum-the role of pyrophosphate in
manipulating pathways to monoterpenes, Organic
& biomolecular chemistry 8,
4589-4600.
4. Wagschal, K.
C., Pyun, H. J., Coates, R. M., and Croteau, R. (1994) Monoterpene
biosynthesis: isotope effects associated with bicyclic olefin formation
catalyzed by pinene synthases from sage (Salvia officinalis), Archives of biochemistry and biophysics 308, 477-487.
5. Weitman, M.,
and Major, D. T. (2010) Challenges posed to bornyl diphosphate synthase:
diverging reaction mechanisms in monoterpenes, Journal of the American Chemical Society 132, 6349-6360.
6. Whittington, D.
A., Wise, M. L., Urbansky, M., Coates, R. M., Croteau, R. B., and Christianson,
D. W. (2002) Bornyl diphosphate synthase: structure and strategy for
carbocation manipulation by a terpenoid cyclase, Proceedings of the National Academy of Sciences of the United States of
America 99, 15375-15380.
7. Komatsu, M.,
Tsuda, M., Omura, S., Oikawa, H., and Ikeda, H. (2008) Identification and
functional analysis of genes controlling biosynthesis of 2-methylisoborneol, Proceedings of the National Academy of
Sciences of the United States of America 105, 7422-7427.
8. Wang, C. M.,
and Cane, D. E. (2008) Biochemistry and molecular genetics of the biosynthesis
of the earthy odorant methylisoborneol in Streptomyces coelicolor, Journal of the American Chemical Society 130, 8908-8909.
9. Hong, Y. J.,
and Tantillo, D. J. (2006) Which is more likely in trichodiene biosynthesis:
hydride or proton transfer?, Organic
letters 8, 4601-4604.
10. Hong, Y. J.,
and Tantillo, D. J. (2009) Modes of inactivation of trichodiene synthase by a
cyclopropane-containing farnesyldiphosphate analog, Organic & biomolecular chemistry 7, 4101-4109.
11. Hong, Y. J.,
and Tantillo, D. J. (2009) Consequences of conformational preorganization in
sesquiterpene biosynthesis: theoretical studies on the formation of the
bisabolene, curcumene, acoradiene, zizaene, cedrene, duprezianene, and sesquithuriferol
sesquiterpenes, Journal of the American
Chemical Society 131, 7999-8015.
12. Hong, Y. J.,
and Tantillo, D. J. (2010) A tangled web-interconnecting pathways to
amorphadiene and the amorphene sesquiterpenes, Chem Sci 1, 609-614.
13. Picaud, S.,
Mercke, P., He, X., Sterner, O., Brodelius, M., Cane, D. E., and Brodelius, P.
E. (2006) Amorpha-4,11-diene synthase: mechanism and stereochemistry of the
enzymatic cyclization of farnesyl diphosphate, Archives of biochemistry and biophysics 448, 150-155.
14. Kollner, T. G.,
Schnee, C., Li, S., Svatos, A., Schneider, B., Gershenzon, J., and Degenhardt,
J. (2008) Protonation of a neutral (S)-beta-bisabolene intermediate is involved
in (S)-beta-macrocarpene formation by the maize sesquiterpene synthases TPS6
and TPS11, The Journal of biological
chemistry 283, 20779-20788.
15. Greenhagen, B.
T., O'Maille, P. E., Noel, J. P., and Chappell, J. (2006) Identifying and
manipulating structural determinates linking catalytic specificities in terpene
synthases, Proceedings of the National
Academy of Sciences of the United States of America 103, 9826-9831.
16. O'Maille, P.
E., Malone, A., Dellas, N., Andes Hess, B., Jr., Smentek, L., Sheehan, I.,
Greenhagen, B. T., Chappell, J., Manning, G., and Noel, J. P. (2008)
Quantitative exploration of the catalytic landscape separating divergent plant
sesquiterpene synthases, Nature chemical
biology 4, 617-623.
17. Little, D. B.,
and Croteau, R. B. (2002) Alteration of product formation by directed
mutagenesis and truncation of the multiple-product sesquiterpene synthases
delta-selinene synthase and gamma-humulene synthase, Archives of biochemistry and biophysics 402, 120-135.
18. Allemann, R.
K., Young, N. J., Ma, S., Truhlar, D. G., and Gao, J. (2007) Synthetic
efficiency in enzyme mechanisms involving carbocations: aristolochene synthase, Journal of the American Chemical Society 129, 13008-13013.
19. Cane, D. E.,
Prabhakaran, P. C., Oliver, J. S., and Mcilwaine, D. B. (1990) Aristolochene
Biosynthesis - Stereochemistry of the Deprotonation Steps in the Enzymatic
Cyclization of Farnesyl Pyrophosphate, Journal
of the American Chemical Society 112,
3209-3210.
20. Miller, D. J.,
Gao, J. L., Truhlar, D. G., Young, N. J., Gonzaleza, V., and Allemann, R. K.
(2008) Stereochemistry of eudesmane cation formation during catalysis by
aristolochene synthase from Penicillium roqueforti, Organic & biomolecular chemistry 6, 2346-2354.
21. Xie, X., Kirby,
J., and Keasling, J. D. (2012) Functional characterization of four
sesquiterpene synthases from Ricinus communis (castor bean), Phytochemistry 78, 20-28.
22. Lopez-Gallego,
F., Agger, S. A., Abate-Pella, D., Distefano, M. D., and Schmidt-Dannert, C.
(2010) Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic
promiscuity and cyclization of farnesyl pyrophosphate geometric isomers, Chembiochem : a European journal of chemical
biology 11, 1093-1106.
23. Lodewyk, M. W.,
Gutta, P., and Tantillo, D. J. (2008) Computational studies on biosynthetic
carbocation rearrangements leading to sativene, cyclosativene, alpha-ylangene,
and beta-ylangene, The Journal of organic
chemistry 73, 6570-6579.
24. Lopez-Gallego,
F., Wawrzyn, G. T., and Schmidt-Dannert, C. (2010) Selectivity of fungal
sesquiterpene synthases: role of the active site's H-1 alpha loop in catalysis, Applied and environmental microbiology 76, 7723-7733.
25. Martin, D. M.,
Faldt, J., and Bohlmann, J. (2004) Functional characterization of nine Norway
Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d
subfamily, Plant physiology 135, 1908-1927.
26. Joseph-Nathan,
P., Reyes-Trejo, B., and Morales-Rios, M. S. (2006) Molecular rearrangements of
(-)-modhephene and (-)-isocomene to a (-)-triquinane, The Journal of organic chemistry 71, 4411-4417.
27. Wang, S. C.,
and Tantillo, D. J. (2008) Prediction of a new pathway to presilphiperfolanol, Organic letters 10, 4827-4830.
28. Gutta, P., and
Tantillo, D. J. (2005) Proton sandwiches: nonclassical carbocations with
tetracoordinate protons, Angewandte
Chemie 44, 2719-2723.
29. Gutta, P., and
Tantillo, D. J. (2006) Theoretical studies on farnesyl cation cyclization:
pathways to pentalenene, Journal of the
American Chemical Society 128,
6172-6179.
30. Lesburg, C. A.,
Zhai, G., Cane, D. E., and Christianson, D. W. (1997) Crystal structure of
pentalenene synthase: mechanistic insights on terpenoid cyclization reactions
in biology, Science 277, 1820-1824.
31. Gutta, P., and
Tantillo, D. J. (2007) A promiscuous proton in taxadiene biosynthesis?, Organic letters 9, 1069-1071.
32. Hong, Y. J.,
and Tantillo, D. J. (2011) The taxadiene-forming carbocation cascade, Journal of the American Chemical Society 133, 18249-18256.
33. Toyomasu, T.,
Tsukahara, M., Kenmoku, H., Anada, M., Nitta, H., Ohkanda, J., Mitsuhashi, W.,
Sassa, T., and Kato, N. (2009) Transannular proton transfer in the cyclization
of geranylgeranyl diphosphate to fusicoccadiene, a biosynthetic intermediate of
fusicoccins, Organic letters 11, 3044-3047.
34. Hong, Y. J.,
and Tantillo, D. J. (2009) A potential energy surface bifurcation in terpene
biosynthesis, Nature chemistry 1, 384-389.
35. Hong, Y. J.,
and Tantillo, D. J. (2010) Formation of beyerene, kaurene, trachylobane, and
atiserene diterpenes by rearrangements that avoid secondary carbocations, Journal of the American Chemical Society 132, 5375-5386.
36. Oikawa, H.,
Nakamura, K., Toshima, H., Toyomasu, T., and Sassa, T. (2002) Proposed
mechanism for the reaction catalyzed by a diterpene cyclase,
aphidicolan-16beta-ol synthase: experimental results on biomimetic cyclization
and examination of the cyclization pathway by ab initio calculations, Journal of the American Chemical Society 124, 9145-9153.
37. Xu, M., Wilderman,
P. R., and Peters, R. J. (2007) Following evolution's lead to a single residue
switch for diterpene synthase product outcome, Proceedings of the National Academy of Sciences of the United States of
America 104, 7397-7401.
38. Silver, G. M.,
and Fall, R. (1991) Enzymatic synthesis of isoprene from dimethylallyl
diphosphate in aspen leaf extracts, Plant
physiology 97, 1588-1591.
39. Giner, J. L.,
Rocchetti, S., Neunlist, S., Rohmer, M., and Arigoni, D. (2005) Detection of
1,2-hydride shifts in the formation of euph-7-ene by the squalene-tetrahymanol
cyclase of Tetrahymena pyriformis, Chemical
communications, 3089-3091.
40. Rajamani, R.,
and Gao, J. L. (2003) Balancing kinetic and thermodynamic control: the
mechanism of carbocation cyclization by squalene cyclase, Journal of the American Chemical Society 125, 12768-12781.
41. Wendt, K. U.,
Lenhart, A., and Schulz, G. E. (1999) The structure of the membrane protein
squalene-hopene cyclase at 2.0 angstrom resolution, J Mol Biol 286, 175-187.
42. Lodeiro, S.,
Xiong, Q. B., Wilson, W. K., Kolesnikova, M. D., Onak, C. S., and Matsuda, S.
P. T. (2007) An oxidosqualene cyclase makes numerous products by diverse
mechanisms: A challenge to prevailing concepts of triterpene biosynthesis, Journal of the American Chemical Society 129, 11213-11222.
43. Xu, R., Fazio,
G. C., and Matsuda, S. P. T. (2004) On the origins of triterpenoid skeletal
diversity, Phytochemistry 65, 261-291.
44. Thoma, R.,
Schulz-Gasch, T., D'Arcy, B., Benz, J., Aebi, J., Dehmlow, H., Hennig, M.,
Stihle, M., and Ruf, A. (2004) Insight into steroid scaffold formation from the
structure of human oxidosqualene cyclase, Nature 432, 118-122.
45. Tian, B. X.,
and Eriksson, L. A. (2012) Catalytic mechanism and product specificity of
oxidosqualene-lanosterol cyclase: a QM/MM study, J. Phys. Chem. B 116,
13857-13862.
46. Fazio, G. C.,
Xu, R., and Matsuda, S. P. (2004) Genome mining to identify new plant
triterpenoids, Journal of the American
Chemical Society 126, 5678-5679.
47. Sato, T.,
Hoshino, H., Yoshida, S., Nakajima, M., and Hoshino, T. (2011) Bifunctional
Triterpene/Sesquarterpene Cyclase: Tetraprenyl-beta-curcumene Cyclase Is Also
Squalene Cyclase in Bacillus megaterium, Journal
of the American Chemical Society 133,
17540-17543.
48. Sato, T.,
Yoshida, S., Hoshino, H., Tanno, M., Nakajima, M., and Hoshino, T. (2011)
Sesquarterpenes (C-35 Terpenes) Biosynthesized via the Cyclization of a Linear
C-35 Isoprenoid by a Tetraprenyl-beta-curcumene Synthase and a
Tetraprenyl-beta-curcumene Cyclase: Identification of a New Terpene Cyclase, Journal of the American Chemical Society 133, 9734-9737.
49. Ravn, M. M.,
Peters, R. J., Coates, R. M., and Croteau, R. (2002) Mechanism of abietadiene
synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl
carbocation intermediates, Journal of the
American Chemical Society 124,
6998-7006.
50. Otomo, K.,
Kenmoku, H., Oikawa, H., Konig, W. A., Toshima, H., Mitsuhashi, W., Yamane, H.,
Sassa, T., and Toyomasu, T. (2004) Biological functions of ent- and syn-copalyl
diphosphate synthases in rice: key enzymes for the branch point of gibberellin
and phytoalexin biosynthesis, The Plant
journal : for cell and molecular biology 39, 886-893.